• Global First Power

Mining Magazine: Nuclear power on a micro scale

Mining Magazine recently highlighted the applications of very Small Modular Reactors in the mining community. The full article is available here; excerpts are provided in italicized text below.

Geographical constraints, in conjunction with higher commodity prices, triggered mining companies to consider deposits in remote areas that were uneconomical before. Today, some of the new mining activities are occurring in extremely remote locations such as the Arctic, high mountains, islands and in the middle of the desert. Many of these remote locations lack access to reliable power sources, and need to rely on tens-of-millions-of-litres of shipped diesel for power generation, creating logistics and environmental challenges as well as capital constraints as tens-of-millions-of-dollars’ worth of fuel must be pre-purchased.

While these changes are happening in the mining industry, a nuclear power industry is going through its own changes as well. Since their introduction in the 1950s, nuclear power plants have been becoming larger with subsequent generations of designs to lower their power cost by realising economies of scale.

Some of the early nuclear power plants had generating capacities of only a few megawatts of electrical power (MWe), whereas modern reactors can generate as much as 1.7 gigawatts per unit. However, a new breed of technology developers emerged in recent years, and they are employing a different strategy to lower the power cost of nuclear reactors – that is, by creating smaller and standardised modular nuclear power plants that are easier and quicker to install and are orders-of-magnitude safer to operate than the conventional nuclear power plants. These new designs are called small modular reactors, or SMRs in short.

While these designs are in various stages of development, the leaders in the industry, such as Global First Power and USNC, are making rapid progress towards commercialisation by adding breakthrough safety and operational improvements to proven and existing nuclear reactor designs.

45 views0 comments